

Tema:

3° Ley de Mendel y Herencia Ligada al Sexo

Objetivo:

Continuar el conocimiento de la genética y su utilidad en la cría de canarios.

Ponente:

Biól. Guillermo Galindo

Herencia Ligada al Sexo y Tercera Ley de Mendel "La Genética"

Herencia Ligada al Sexo

¿Cómo se determina el sexo en los Canarios?

Macho Homogamético

Hembra Heterogamética

> X Z X O

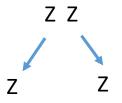
Z W

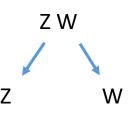
Herencia Ligada al Sexo

¿Qué implica el gen vacío o nulo?

- > Gen más pequeño.
- > Gen inactivo.
- > No contiene genes alélicos para el cromosoma X.
- ➤ La presencia de un gen mutante sobre el único cromosoma X disponible es condición suficiente para que se manifieste la mutación.

Hembra





Herencia Ligada al Sexo

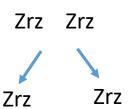
¿Determinación del sexo en la prole?

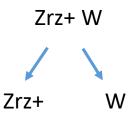
	Z	W
Z	ZZ	Z W
Z	ZZ	Z W

50 % machos 50 % hembras

¿Qué mutaciones están ligadas al sexo?

- Pastel
- Satiné
- Marfil (Rojo, Amarillo)
- Bruno
- Ágata
- Isabela (Ágata + Bruno)

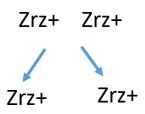


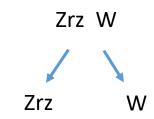


Macho Ágata pastel

Hembra Ágata

	Zrz+	W
Zrz	Zrz Zrz+	Zrz W
Zrz	Zrz Zrz+	Zrz W


50 % machos Ágata/pastel 50 % hembras Ágata pastel

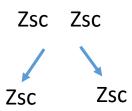


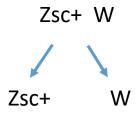
Macho Ágata

Hembra Ágata pastel

	Zrz	W
Zrz+	Zrz+ Zrz	Zrz+ W
Zrz+	Zrz+ Zrz	Zrz+ W

50 % machos Ágata/pastel 50 % hembras Ágata

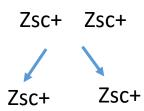

Los machos portadores no son fenotípicamente distinguibles de los machos ancestrales, solamente el análisis fenotípico de los reproductores y el árbol genealógico podrán develar la condición de macho portador (Massimo Natale 2003)

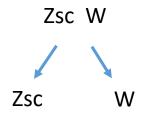


Macho Amarillo marfil

Hembra Amarillo

	Zsc+	W
Zsc	Zsc Zsc+	Zsc W
Zsc	Zsc Zs c+	Zsc W


50 % machos Amarillos/ marfil 50 % hembras Amarillo marfil



Macho Amarillo

Hembra Amarillo marfil

	Zsc	W
Zsc+	Zsc+ Zsc	Zsc+ W
Zsc+	Zsc+ Zsc	Zsc+ W

50 % machos Amarillos/ marfil 50 % hembras Amarillo

Herencia influida por el sexo

- Los genes influidos por el sexo se encuentran en autosomas.
- Debido a la acción de las hormonas sexuales se expresan de diferente forma.
- El ejemplo clásico los canarios Mosaico. Expresan el color en las zonas de elección debido a las hormonas sexuales. También se ven influyen la concentración, la luminosidad y la extensión del pigmento.
- EL gen mosaico (m) esta influenciado por el sexo pero no ligado al sexo.
- Otros influidos por el sexo:
 - Factor óptico de refracción.
 - Carácter intenso nevado.
 - Concentración de Eumelanina.

Herencia limitada por el sexo

- Los caracteres se presentan de forma exclusiva en uno de los sexos.
 - Canto en los machos.
 - Diseño especifico del plumaje.
 - Plumas de adorno. (pavorreal, ave del paraíso, quetzal etc)

SIMBOLOGIA DE LOS PRINCIPALES GENES EN CANARICULTURA

GEN DOMINANTE	ABREVIATURA	GEN RECESIVO	ABREVIATURA	GEN DOMINANTE	ABREVIATURA	GEN RECESIVO	ABREVIATURA
Negro	N	Marrón	n	No Alas Grises	PP	Alas Grises	рр
Oxidado	0	Diluido	0	No Ópalo	ОР	Ópalo	ор
Amarillo	А	No Amarillo	a	No Feo Ino	INO	Feo Ino	ino
Rojo	R	No Rojo	r	No Satine	OS	Satine	os
Blanco Dominante	BD	No Blanco Dominante	bd	No Topacio	TZ	Topacio	tz
NO Blanco	BR	Blanco	br	No Eumo	EU	Eumo	eu
Intenso	Ι	Nevado	i	No Ónix	OX	Ónix	ох
No Mosaico	M	Mosaico	m	No Cobalto	СО	Cobalto	СО
No Marfil	MA	Marfil	ma	No Jaspe	J	Jaspe	j
No Urucum	UR	Urucum	ur	No Mogno	MG	Mogno	mg
No Pico Amarillo	PA	Pico Amarillo	ра	No Refracción	RF	Refracción	rf
No factor Enzimático	E	Factor Enzimático	e				
No Pastel	Р	Pastel	р			LIGADO AL SEXO	

GENES EN ESTUDIO EN CANARIOS DE COLOR

Característica	ID	Genes Codo	minante	s Y Aditivos	Autosómico	Ligado al sexo
Melanina	Е	Melánico	е	Lipocromo	Ok codominante	
Variedad	Α	Amarillo	R	Rojo	Ok Aditivo	

Característica	ID	Gen Dominante	ID	Genrecesivo	Autosómico	Ligado al sexo
Moña	МО	Moña	mo	No moña (Liso)	Ok	
Melanina	0	Oxidada	oa	Diluida		Ok
Melanina	N	Negro	n	Bruno		Ok
Variedad	BD	Blanco dominante	bd	No Blanco dominante	Ok	
Variedad	BR	No blanco recesivo	br	Blanco recesivo	Ok	
Variedad	MA	No marfil	ma	Marfil		Ok
Categoría	1	Intenso	i	Nevado	Ok	
Categoría	М	No mosaico	m	Mosaico	Ok	
Mutación	RF	No refracción	rf	Refracción.	Ok	

GENES EN ESTUDIO EN CANARIOS DE COLOR

Característica	ID	Gen Dominante	ID	Genrecesivo	Autosómico	Ligado al sexo
Mutación Melánica	Р	No pastel	р	Pastel		Ok
Mutación Melánica	PP	No Ala gris	pp	Alagris		ok
Mutación Melánica	OP	No opal	ор	Opal	Ok	
Mutación Melánica	INO	No ino	ino	Ino	Ok	
Mutación Melánica	os	No satine	os	Satine		Ok
Mutación Melánica	TZ	No topacio	tz	Topacio	Ok	
Mutación Melánica	EU	No eumo	eu	Eumo	Ok	
Mutación Melánica	ОХ	No onix	ox	Onyx	Ok	
Mutación Melánica	со	No cobalto	со	Cobalto	Ok	
Mutación Melánica	J	Jaspe	j	No jaspe	Ok	
Mutación Melánica	MG	No magno	mg	Mogno	ОК	
Mutación Lipocromica	UR	No urucum	ur	Urucum	ОК	
Mutación Lipocromica	PA	No Pico amarillo	ра	Pico amarillo	ОК	

Ley de la herencia independiente de los caracteres: 3ª Ley de Mendel

Partiremos de una herencia dominante y homocigota para los dos caracteres.

Ágata amarillo intenso	Ágata topacio amarillo nevado
to+ to+, I I	to to, I+I+

Los distintos caracteres se heredan de forma independiente, combinándose al azar en la progenie. (3ª L.M.)

	to I+	to I+	
to+ I	to+ to 11+	to+ to 11+	
to+ I	to+ to 11+	to+ to 11+	

Fenotipo: 100 % Ágata amarillo intenso/ topacio y nevado

Genotipo: 100 % to+ to I I+

1er- Ley de Mendel

Ley de la herencia independiente de los caracteres: 3º Ley de Mendel

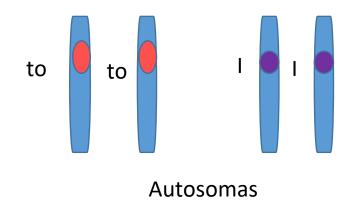
Para exponer los resultados de la 3ra. Ley de Mendel con todas las combinaciones posibles utilizamos la Tabla de Punnet.

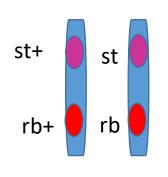
Ágata amarillo intenso/ topacio y nevado

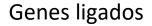
to+ to | |+

Ágata amarillo intenso/ topacio y nevado to+ to | | |

	to+ l+	to+ I	to I+	to I
to+ I+	to+to+ l+ l+	to+to+ I+ I	to+to I+I+	to+to I+I
to+ I	to+to+ +	to+to+II	to+to I I+	to+to I I
to I+	to to+ I+I+	to to+ I+I	to to I+I+	to to I+I
to I	to to+ I I+	to to+ II	to to 11+	to to 11


Los distintos caracteres se heredan de forma independiente, combinándose al azar en la progenie. (3º L.M.)


Fenotipo:


- 9 = Ágata amarillo intenso.
- 3 = Ágata amarillo nevado.
- 3 = Ágata topacio amarillo intenso.
- 1 = Ágata topacio amarillo nevado

Excepciones a la 3ra. Ley de Mendel

- Cuando los caracteres considerados se encuentran ligados, es decir el locus se encuentra en el mismo cromosoma.
- Cuando se presentan genes letales.
- En la Epistasia. (interacción entre dos o más parejas de genes) Ejem: Blanco recesivo no permite la expresión de Blanco dominante, amarillo, rojo y marfil.

Bibliografía

Autoir	Año	Titulo	Revista/ Editorial	Paginas
Cabrera A G	2007	Genética Fácil y Practica para Nuestros Pájaros. Cien Preguntas, Cien Respuestas	Croma Press	238 pp
Cuevas M. R.	2000	Genética y Reproducción: Aplicadas a la ornitología deportiva.	Croma Press	239 pp
Natale M.	2003	Introducción a la Genética en la Ornitocultura	Ornitología Práctica No. 1	48-52
Natale M.	2003	Mecanismos de la Trasmisión Hereditaria	Ornitología Práctica No. 2	51-53

